Increasing Signal Strength

Once you start using wireless cameras the very next thing you start wanting is to get out a little further, just over the next hill or maybe another mile or maybe 5.
So understanding how to increase your wireless signal strength all of the sudden becomes very important. This is also why we offer setups and installation services Nationwide. Not only will our techs get the maximum range but we will also train you as we go if you are interested!

So what can you do to increase your signal strength?
For starters make sure your system is operating at short ranges properly BEFORE you try and go long.  This is a critical step not to be overlooked. When you are first setting up your wireless system always start with the closest camera and make sure it performs well before swinging for the fences and going long.

Signal strength in general has a lot of variables, but there are some key points to understand to insure you achieve the best signal strength for the longest period of time.

  • Connections
    • All connections should be clean and corrosion free
    • Make sure to tape all connections with a rubberized tape to waterproof
  • Cables
    • No breaks, chew marks, missing shielding and free of any damage
    • Install with a drip loop if possible
    • Secure cables down to avoid excessive movement and stress
  • Antenna
    • Select the correct antenna for the application
    • Tape all connections to waterproof
    • Secure antenna to avoid excessive movement and stress

So with the basics covered, lets talk how to achieve better signal strength. Understand that with each and every setup you will encounter many different variables. Every setup with be different but if you understand how the signal works it may help you increase your signal strength and ultimately increase your range plus speed as well. With the BuckEye Cam Wireless system the signal test signal function is typically only used during setups and occasionally when you decide to test your signal, but for the most part once the system is up and running the test signal function is used very little. The test signal function is setup to quickly poll the network for the signal so it is always best to test the signal several times to insure accuracy of the signal reading. If you get a good signal reading on the first try you are more than likely good to move on. However a low signal or no signal on the first try only means you need to test the signal again BEFORE making any changes. Because the signal test is so quick it can be affected by network traffic. By that I mean if the camera network is really busy (sending a lot of pictures from another camera for example) it can affect the signal test. Think of it like getting a busy signal on a phone but rather than it saying busy it will just say no com. That is is why when you get a no com response you should always try and test the signal several more times.

If once you have established you are not getting a signal or just want to improve the signal reading, you have several options available. The first is always to upgrade your antennas. Keep in mind that with our system you are dealing with the antenna at the camera and also the antenna at the base.
My suggestion is to ALWAYS upgrade your base antenna first and the reason is because upgrading your base antenna will increase your signal strength across your entire network (not just one camera). So you get more bang for your buck by upgrading your base antenna first then upgrade the field units next. You can certainly upgrade both.
The typical rule of thumb when it comes to antennas is “the higher the better” – there are a small percentage of instances where this isn’t the case but for the most part “the higher the better”. Regardless of which antenna you are using the higher you can get it the better your signal will be.
This should include elevation advantages when possible. A well placed repeater on the “mountain top” can all of the sudden take your 2 mile range and make it into 20 miles on a single hop so keep that in mind.

Which antenna???
We get this questions a lot. First the antenna must be matching the correct frequency. If you get the antennas from us – they match, no worries.

Yagi VS Omni
I’m not going to go into engineering specifics and complicate this so basically a Yagi type antenna is a directional style, meaning you point it in the direction you want your signal to go. The Omni type antenna has a 360 degree pattern so there is no “aiming” involved.
So if you are not sending and receiving from multiple directions (like a base does or a repeater would) than usually the yagi antenna is the preferred choice.
If you are sending and receiving from multiple points then the Omni antenna is the one to use.
Yagi antennas can have higher output (referred to as gain in dBi) than Omni type antenna.
The other aspect of the yagi which is often overlooked is they can eliminate interference or “noise” from outside sources. Since the yagi needs to be “aimed” they have a beam in which they transmit and receive. They also have “dead space” which can be used to quiet the interference by aiming the yagi in a way that still gets the signal out but also quiets the noise in the dead space. In the diagrahm below you can see the beam width and shape of a typical yagi. Within the red area is where the antenna can “hear” outside of the red area becomes more difficult for the antenna to pick up the signal. This is why the yagi needs to be “aimed”.
When working with yagi antennas, you really need to aim – test – move – aim – test move until you get the best signal possible. This needs to be done a in a slow and methodical fashion taking your time to make sure you have the best signal possible. Having coordinates helps to make sure you are pointing the yagi in the precise direction to start with. You might be surprised to find out the direction it needs to be pointed isn’t the direction you thought it might need to be.

Beamwidth - Yagi

In contrast the omni “hears” in a 360 degree pattern so you just need to get it up high – no aiming involved.

d_HG908U-PRO_2

Below are sample types of Yagi and Omni antennas.

IMG_7643
Typical Yagi Style Antenna
FullSizeRender3
Omni Style Antenna

 

Cables
Cables are probably more easily understood (and explained). If you are going to use a cable longer than 20′ you need to go with “low loss” cable. We use and call them 400 series cables, but they can have several different names.
When it comes to cables you just don’t want the length to be any longer than really necessary because you lose signal (dB) for every foot of cable. Rule for this is to keep the length within 10′ of what you really need.  You can easily calculate your cable signal loss by using the 3.9 dB loss for every 100′ with 400 series cable. So if your antenna has a gain of 9 dBi and you are using a 40′ cable your net gain will be 7.44 dBi .
If add another 10′ of cable making it a 50′ cable and your net gain would be 7.05 dBi so you can see why you don’t want a bunch of extra cable. This doesn’t take in consideration each connection point but the measurables which you can control (antenna gain and cable length are the biggest factors)

Mounting
So you have the right antenna and the correct cable now how do you mount it all? There are a multitude of ways to mount everything as long as the antenna is up as high as possible, aimed and secured you pretty much have it. There are antenna masts both stationary and mobile telescoping available to use but the key is getting the antenna secured and stable. If your mount is “swaying in the wind” or easily moved by mother nature you will experience less than stellar results, so make sure your mount is solid. Also keep in mind that you may need to service the antenna/cable every now and then so plan a method for this while you are at it. Also make sure that before your completely secure your antenna down that it is aimed correctly and you are receiving a good signal. Once you are getting a good signal, tighten everything down and verify you still have a good signal before you leave.

If you follow these tips it will surely improve the signal and will make your wireless system more enjoyable.

 

 

 

Leave a Reply

Your email address will not be published.